

PII: S0040-4039(96)02008-4

## Prins Cyclization of 4-Allyl-1,3-Dioxanes Prepared from 1,3-Diol Synthons. A Rapid Entry into Functionalized Tetrahydropyrans

Yueqing Hu, Donald J. Skalitzky, and Scott D. Rychnovsky\*

Department of Chemistry, University of California, Irvine, CA 92697-2025

Key Words: Prins cyclization, 1,3-diols, tetrahydropyrans.

**Abstract**: A variety of 4-allyl-1,3-dioxanes were prepared and cyclized to give 4-chloro or 4-acetoxy tetrahydropyrans in good yields and with high stereoselectivity.

Copyright © 1996 Elsevier Science Ltd

Prins cyclizations have been used to prepare a variety of monooxygenated rings.<sup>1</sup> Cyclizations of mixed acetals to tetrahydrofurans were among the early examples of this reaction,<sup>2,3</sup> which has since been extended to the preparations of oxepanes<sup>4</sup> and oxocanes.<sup>5</sup> Mixed acetals derived from unsaturated alcohols are the most common precursors, although there are isolated examples using acetals of unsaturated diols.<sup>6</sup> We became interested in Prins cyclizations as an approach to oxygenated tetrahydropyran rings found in natural products such as altohyrtin (spongistatin).<sup>7</sup> The cyclization substrates were envisioned to arise from straightforward extensions of our 1,3-diol synthon chemistry.<sup>8,9</sup> Allylation of 1,3-diol synthons followed by Prins cyclization provide a rapid entry into functionalized tetrahydropyrans in which three new stereogenic centers are introduced stereoselectively.

The 1,3-diol synthons **3** and **4** were prepared from 3-hydroxy ester **1** as illustrated in Scheme 1.<sup>10</sup> The 4-cyano-1,3-dioxane **3** was prepared via aldehyde **2** by cyanohydrin formation and protection as an acetaldehyde acetal. This procedure is directly analogous to our synthesis of cyanohydrin acetonides.<sup>8</sup> Conversion of aldehyde **2** to acetate **4** has been previously reported, and involves equilibration of the 3-hydroxy aldehyde with excess isobutyraldehyde followed by acetylation of the intermediate 4-hydroxy-1,3-dioxane.<sup>9</sup> The coupling of acetate **4** with allyltrimethylsilane was promoted by BF<sub>3</sub>·OEt<sub>2</sub>, and produced the trans adduct **5** with >95:5 selectivity.<sup>9</sup>

The cis adducts 7, 9, and 11 were prepared by alkylation and reductive decyanation of 4-cyano-1,3-dioxane 3 as shown in Scheme 2. Deprotonation of 3 with LiHMDS and alkylation with allyl chloride gave 6 as a single stereoisomer, and reductive decyanation with Li/NH<sub>3</sub> produced the all-equatorial adduct 7 with >99:1 selectivity. The stereoselectivity of the reductive decyanation route complements that of the BF<sub>3</sub>·OEt<sub>2</sub>-promoted allylation. More complex unsaturated side chains can be introduced by direct alkylation, but geometrically defined E and Z allyl chlorides can be difficult to prepare. The route we developed begins with alkylation of 3 with 1-chloro-2-nonyne. Standard conditions for the reductive decyanation of 8 lead to concomitant reduction of the alkyne to the syn E-alkene 9. The Z-alkene 11 was prepared by Lindlar's hydrogenation followed by reductive decyanation. Each of the Prins cyclization substrates was prepared as single diastereomer from 1,3-diol synthon 3 or 4.

Prins cyclizations were initially investigated using TiCl<sub>4</sub>.<sup>3</sup> Entries 1,5,6, and 9 in Table 1 show that each of these cyclizations proceed in high yield, and with the exception of the Z-alkene 11, the stereoselectivity is better than 93:7 in each case. Alkene 11 leads to a 2:1 mixture of stereoisomers where the major and minor isomers have equatorial and axial chlorides, respectively. These cyclizations are related to the oxonium-ion initiated polyene cyclizations developed by Johnson.<sup>11</sup> The synthetic targets of interest have oxygen rather than halogen substitution at the 4-position of the tetrahydropyran, so cyclization and trapping with various oxygen nucleophiles was investigated.<sup>6</sup> The best general conditions are C in Table 1 and involve cyclization with 4 equiv. BF<sub>3</sub>·OEt<sub>2</sub>, 10 equiv. HOAc, and 2 equiv. TMSOAc in cyclohexane at 25 °C.<sup>12</sup> The reaction products were acetylated to simplify analysis. The TMSOAc leads to a modest increase in yield, and the nonpolar cyclohexane solvent reduces the amount of fluoride trapping<sup>13</sup> (compare entries 3 & 4). Cyclizations of 5 and 7 produce the equatorial acetate products 16 and 15 in ca. 85% yield with > 90% diastereoselectivity. The cyclization and trapping with acetate were further investigated using substrates 12 and 13, which were prepared in a route analogous to the preparation of 5.<sup>9</sup> These more highly substituted systems cyclize less efficiently but still show useful levels of stereoselectivity. An unusual result was found when the cyclization of 5

| Entry # | SM                               | Conditionsa                          |   | Yield                        | Product            | Selectivity <sup>b</sup> |
|---------|----------------------------------|--------------------------------------|---|------------------------------|--------------------|--------------------------|
| 1       |                                  | 7                                    | Α | 81% (X = Cl,<br>Y = OH)      | 15 x               | 93:7                     |
| 2       |                                  |                                      | В | 86% (X, Y = OA               | <b>c)</b>          | 91:7:2                   |
| 3       |                                  | 5                                    | С | 84% (X = OAc)                | Aco o 16           | 94:6                     |
| 4       |                                  |                                      | D | 54% (X = OAc)<br>33% (X = F) |                    |                          |
| 5       | ↓↓↓<br>C <sub>6</sub> H          | <b>9</b><br><sub>13</sub> - <i>n</i> | Α | 71%                          | OH O 17            | 98:2                     |
| 6       | ↓↓↓<br>C <sub>6</sub> H          | <b>11</b>                            | A | 70%                          | OH O C6H13-71      | 67:33                    |
| 7       | n-C <sub>6</sub> H <sub>13</sub> | 12                                   | E | 65% (X = OAc)<br>14% (X = F) | n-CeH₁3 OAc O X 19 | 88:7:5                   |
|         | Y                                |                                      |   |                              | <u> </u>           |                          |

Table 1. Prins Cyclization of 4-Allyl-1,3-Dioxanes Promoted by Lewis Acids.

(a) Conditions. **A**: 2 equiv.  $TiCl_4$ ,  $CH_2Cl_2$ , -78 °C, 2 h. **B**: i, 4 equiv.  $BF_3 \cdot OEt_2$ , 10 equiv. HOAc, cyclohexane, 25 °C; ii.  $Ac_2O$ ,  $Et_3N$ , DMAP. **C**: i, 4 equiv.  $BF_3 \cdot OEt_2$ , 10 equiv. HOAc, 2 equiv. TMSOAc, cyclohexane, 25 °C; ii.  $Ac_2O$ ,  $Et_3N$ , DMAP. **D**: i, 2 equiv.  $BF_3 \cdot 2AcOH$ ,  $CH_2Cl_2$ ,  $-10-O^\circ$  C; ii.  $Ac_2O$ ,  $Et_3N$ , DMAP. **E**: i, 10 equiv.  $BF_3 \cdot OEt_2$ , 10 equiv. HOAc, cyclohexane, 25 °C; ii.  $Ac_2O$ ,  $Et_3N$ , DMAP. **E**: c, 10 equiv.  $BF_3 \cdot OEt_2$ ,  $BF_3 \cdot OEt_3$ 

41%

95%

20

21

83:17

95:5

13

14

was attempted in benzene, eq. 1. The major product 22 arose from a stereoselective Friedel-Crafts alkylation of benzene by the intermediate secondary cation. Each of these cyclizations proceeds in reasonable to excellent yield with complete stereochemical induction at the 4- and 6-positions of the newly formed tetrahydropyran ring.

The single stereogenic center in 3-hydroxy ester 1 directs the introduction of three new stereogenic centers in tetrahydropyran products 15 and 16. Thus in a few steps, readily available 3-hydroxy esters can be converted into single diastereomers of complex tetrahydropyrans. These transformations will be valuable in natural products synthesis.<sup>14</sup>

## References and Footnotes

- Snider, B. B. in Comprehensive Organic Synthesis,; Trost, B. M., Fleming, I. and Heathcock, C. H., Ed.; Pergamon Press: New York, 1991; Vol. 2, pp 527-561.
- <sup>2</sup> (a) Stapp, P. R. J. Org. Chem. 1969, 34, 479-485. (b) Hanschke, E. Chem. Ber. 1955, 88, 1053-1061.
- (a) Winstead, R. C.; Simpson, T. H.; Lock, G. A.; Schiavelli, M. D.; Thompson, D. W. J. Org. Chem. 1986, 51, 275-277. (b) Bunnelle, W. H.; Seamon, D. W.; Mohler, D. L.; Ball, T. F.; Thompson, D. W. Tetrahedron Lett. 1984, 25, 2653-2654. (c) Nikolic, N. A.; Gonda, E.; Longford, C. P. D.; Lane, N. T.; Thompson, D. W. J. Org. Chem. 1989, 54, 2748-2751. (d) Melany, M. L.; Lock, G. A.; Thompson, D. W. J. Org. Chem. 1985, 50, 3925-3927.
- <sup>4</sup> Castaneda, A.; Kucera, D. J.; Overman, L. E. J. Org. Chem. 1989, 54, 5695-5707.
- <sup>5</sup> Blumenkopf, T. A.; Bratz, M.; Castaneda, A.; Look, G. C.; Overman, L. E.; Rodriguez, D.; Thompson, A. S. *J. Am. Chem. Soc.* **1990**, *112*, 4386-4399.
- 6 (a) Kay, I. T.; Williams, E. G. Tetrahedron Lett. 1983, 24, 5915-5918. (b) Kay, I. T.; Bartholomew, D. Tetrahedron Lett. 1984, 25, 2035-2038.
- <sup>7</sup> Kobayashi, M.; Aoki, S.; Kitagawa, I. *Tetrahedron Lett.* **1994**, 35, 1243-1246.
- <sup>8</sup> Rychnovsky, S. D.; Zeller, S.; Skalitzky, D. J.; Griesgraber, G. J. Org. Chem. 1990, 55, 5550-5551.
- (a) Rychnovsky, S. D.; Skalitzky, D. J. J. Org. Chem. 1992, 57, 4336-4339.
   (b) Rychnovsky, S. D.; Skalitzky, D. J. Synlett 1995, 555-556.
   (c) Boons, G.-J.; Everson, R.; Smith, S.; Stauch, T. Synlett 1996, 536-538.
- <sup>10</sup> Racemic 3-hydroxy esters were used in these studies.
- <sup>11</sup> Bartlett, P. A. in *Asymmetric Synthesis*; Morrison, J. D., Ed.; Academic Press: New York, 1984; Vol. 3, pp 341-409.
- Sample experimental: cyclization of 5 to 16 (X = OAc). 4-Allyl-1,3-dioxane 5 (200 mg, 0.88 mmol), AcOTMS (265 μL, 1.76 mmol, 2 equiv) and AcOH (506 μL, 8.80 mmol, 10 equiv) were dissolved in 13 mL cyclohexane under N<sub>2</sub> at room temperature. BF<sub>3</sub>·Et<sub>2</sub>O (435 μL, 3.53 mmol, 4 equiv) was added dropwise. After stirring for 4 h, the reaction was quenched with saturated sodium bicarbonate. The layers were separated and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub> (× 3). The combined organic layers were dried (MgSO<sub>4</sub>), filtered, and concentrated. The resulting mixture was treated with excess Ac<sub>2</sub>O, Et<sub>3</sub>N and a catalytic amount of DMAP in CH<sub>2</sub>Cl<sub>2</sub>. Aqueous workup and purification by flash chromatography (SiO<sub>2</sub>, 10% EtOAc/hexanes) gave 245 mg (0.75 mmol, 84 %) product of 94:6 mixture of diastereomers as a pale yellow oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 5.19 (dddd, *J* = 8.5, 8.5, 5.0, 3.5 Hz, 1 H); 4.85 (tt, *J* =11.0, 5.0 Hz, 1 H); 3.30 (tt, *J* = 10.5, 1.5 Hz, 1 H); 2.94 (ddd, *J* = 11.0, 6.5, 2.0 Hz, 1 H); 2.02 (s, 3 H); 2.00 (s, 3 H); 1.98-1.86 (m, 1 H); 1.68-1.48 (m, 5 H); 1.35-1.17 (m, 4 H); 0.95-0.83 (m, 12 H). <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>, DEPT) δ *C*, 169.8, 169.8; CH, 79.9, 71.2, 70.3, 69.3, 32.4, 24.1; CH<sub>2</sub>, 43.5, 40.7, 37.1, 33.7; CH<sub>3</sub>, 22.3, 21.7, 20.6, 20.6, 18.0, 17.9. IR (neat, cm<sup>-1</sup>) 2959, 2873, 1739, 1468, 1369, 1241, 1162, 1027. Anal. Calcd for C<sub>18</sub>H<sub>32</sub>O<sub>5</sub>: C, 65.82; H, 9.82. Found: C, 65.86, H, 9.69.
- <sup>13</sup> Tetrahydropyran **16** (X = F, entry 4) was produced as a 2:1 mixture of equatorial and axial fluorides.
- This work was supported by the NIH, the NSF, and Pfizer, Inc.